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EXISTENCE OF SOLUTIONS FOR STEADY DETONATION OF GAS SUSPENSIONS

UDC 532.529.5D. V. Voronin

The existence of solutions of the traveling-wave type is studied for a system of equations that
describes a one-dimensional motion of a suspension of evaporating particles in a viscous and
heat-conducting chemically reacting gas. Using topological methods, it is shown that solutions
corresponding to weak, strong, and Chapman–Jouguet detonation exist under certain restric-
tions on energy release and mass transfer.

The problem of constructing profiles corresponding to traveling waves in two-phase media is important.
This is primarily related to the study of shock or detonation waves in gas–droplet and bubbly media, gas–
solid particles and gas–liquid film systems, etc. The problem of the structure of shock waves or detonation
waves in a one-dimensional flow includes two main topics: the existence of solutions of equations of motion
for a viscous liquid (which is the carrier phase for heterogeneous media) with a region of rapid variation of
its parameters and the description of the wave profile. The solution of the first problem requires the use of
analytical methods. The second problem can be effectively solved by numerical methods.

The initial state of the medium ahead of the wave and the final state corresponding to the equilibrium
state behind the wave are usually singular points of the dynamic system of ordinary differential equations
that describe the motion of the phases. Therefore, prior to integrating this system numerically, one has to
prove the existence of a trajectory whose asymptotic ends are singular points.

The wave study should be performed within the framework of the model of hydrodynamics of real
liquids, which takes into account the viscosity, thermal conductivity, and diffusion of the substance. The first
qualitative solution of the problem was obtained for shock waves in [1, 2] and for gas detonation in [3–6], and
strong restrictions were imposed on the flow parameters. For example, the analysis [3–6] is valid only for the
Lewis number Le = 1 and Prandtl number Pr = 3/4. The numerical and approximate analytical profiles of
detonation waves in two-phase media were constructed in [7]. These studies and also problems of existence
of deflagration (combustion) waves are described in detail in [8, 9]. The theorem of existence and uniqueness
of homogeneous detonation in a viscous and heat-conducting gas was proved by Majda [10] and that for the
case of diffusion of the substance by Gardner [11].

In the present paper, we prove a theorem on existence of solutions corresponding to steady detonation
waves in a reacting suspension of particles in a viscous and heat-conducting gas. The problem is formulated
in [12], where the conditions of existence of solutions are also given. The rigorous proof of the theorem
described below is based on the use of the Conley index — a topological invariant, which is a generalization
of the Morse index [11, 13].

Formulation of the Problem. We study the motion of particles (the condensed or the c-phase)
suspended in a viscous and heat-conducting gas, which satisfies the equation of state of an ideal gas. We
assume that the motion of the medium is one-dimensional, and the interaction of particles proceeds only
in the gas phase, which is valid if the volume concentration of particles is rather low. The system of initial
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equations that describe the motion of the two-dimensional medium is divided into two subsystems (for the gas
and for the c-phase) related to each other only via their right parts [14]. We assume that the interphase mass
transfer is determined by evaporation of the c-phase, where the gas temperature is higher than the particle
temperature, and also by gasification of particles due to interphase friction for different phase velocities; the
phase temperatures and velocities in the initial quiescent state are identical; the chemical reactions proceed
only in the gas; the evaporated substance reacts instantaneously, and the magnitude of the thermal effect is
determined by the mass concentration of the substance; the internal energy of the particles and the mean
molecular weight of the gas are constant. Without loss of generality, we assume that the viscosity η, the
thermal conductivity λ, and the ratio of specific heats γ of the gas are also constant quantities.

Let D be the velocity of the traveling wave, x be the spatial coordinate in the laboratory coordinate
system, and t be the time. We introduce a self-similar variable ξ = Dt − x. In a coordinate system moving
with velocity D, the initial system of partial equations reduces to a system of ordinary differential equations
with respect to the variable ξ, which is similar to that given in [12]:
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Here u is the gas velocity in the coordinate system moving with velocity D, T and ρ are the gas temperature
and density, and k and w are the degree of outburning and the velocity of the c-phase, respectively (k =
1− v/v0, where v is the volume of one particle). The subscript 0 corresponds to the initial state of the phase
parameters of the medium; p is the pressure, R is the gas constant, Q = −kq is the thermal effect of chemical
reactions, C1, C2, C3, q, and n (n > 1) are constants, and

I0 = (γp0/(γ − 1) + kσ0e0)/ρin, Ω = (1− k)σ0D
2(1− w/D), ρin = ρ0 + kσ0, (2)

where σ0 and e0 are the initial density and thermodynamic component of the internal energy of particles,
respectively, and ρin is the mean initial density of the medium.

The initial autonomous dynamic system (1), (2) yields an adequate description of the processes of
interphase interaction for k ∈ [0, 1] and T > T0. Below we study the solutions of the system for all values of
T and k; the solution whose existence is proved below satisfies the restrictions k ∈ [0, 1] and T > T0.

To refine the heat-release model, we introduce the ignition temperature Ti > T0 and assume that the
evaporated substance of the c-phase does not react if T < Ti. By analogy with [11], we introduce a narrow
transitional region in the neighborhood of the hyperplane T = Ti, where the evaporated substance burns
out rapidly. In passing through this region, the phase trajectories retain continuity and smoothness, and
afterwards the magnitude of the thermal effect is determined only by the gasification rate. The procedures
of constructing isolating neighborhoods are similar for the refined and simpler models.

We normalize system (1), (2) using constants corresponding to the initial values of the gas parameters:
p0, ρ0, T0, and u0 (u2

0 ≡ p0/ρ0). In the dimensionless variables, the system acquires the form
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where the functions Fi (i = 1, . . . , 4) of the dimensionless variables u, T , k, and w (for convenience, we retain
the notation for all basic variables) are obtained from the initial variables by substituting T for RT and 1 for
p0, ρ0, and T0.

We note that the energy release in this case is determined only by the degree of gasification k. The
kinetic equation is the third equation of system (3). In the theory of combustion, the chemical-reaction rate
should be assumed to be zero at temperatures slightly higher than the initial one, since the nonzero rate leads
to an infinite growth of parameters at infinity. In this case, for k = 1, the right part of the third equation is
equal to zero, which is similar to a certain extent to the requirement of vanishing of the reaction rate. None
of the trajectories of the system passing through points with k < 1 intersects the hyperplane of the phase
space k = 1 except for the curves approaching asymptotically the points corresponding to the equilibrium
states.

The subsequent study is performed in the phase space (u, T , k, w). This approach is widely used in
the theory of combustion and detonation [9]. Below we show the existence of trajectories in the phase space,
whose limits are isolated singular points — the states of equilibrium (rest points) of system (3). We will
call these points the initial and final states of the medium, though, strictly speaking, for finite values of ξ,
the medium cannot go out of or come to these states from other points of the phase space. We note that
along these trajectories, due to the monotonicity of k (F3 > 0), there is a unique correspondence between the
values of the parameter ξ eliminated during the transition to the phase plane and the degree of gasification k:
dk = F3 dξ.

Singular Points of the Dynamic System. We study the behavior of the trajectories of system (3)
in the phase space (u, T , k, w). We assume that the values of the parameter D (velocity of the traveling
wave) are greater than some critical value D∗ (D2

∗ > γ), which corresponds to shock and detonation waves.
If k 6= 1, then the only singular point in which all the right parts of system (3) vanish simultaneously is the
point A0(D, 1, 0, D), which corresponds to the initial state of the medium ahead of the wave.

If k = 1, system (3) decomposes into two subsystems, since the functions F1 and F2 are independent
of w. In this phase hyperplane, the curve F1(u, T, 1) = 0 is a parabola whose branches are turned downward
(with respect to the axes u and T ). The curve F2(u, T, 1) = 0 is a parabola whose branches are turned upward
(Fig. 1). For each fixed value of the thermal effect of chemical reactions q for D > D∗, these parabolas have
two intersection points: A1, where u2 > γp/ρ, and B1, where u2 < γp/ρ (the points correspond to weak
and strong detonation). For D = D∗, the parabolas touch each other and the two points merge into one
(u2 = γp/ρ), which corresponds to the Chapman–Jouguet detonation. If D < D∗, then the only remaining
singular point of system (3) is A0.

We note that the Chapman–Jouguet state can be reached for a finite value of ξ in the case of nonideal
(in particular, heterogeneous) detonation. This is observed if the whole system is divided into two subsystems
related to each other only through their right parts. If the perturbations are transferred only by the carrier
phase (gas), the right parts of only the gas-dynamic subsystem vanish at the Jouguet point. The mapping
point goes out of the state of equilibrium in the case of a finite value of ξ (for example, due to the velocity
nonequilibrium of the phases). In our problem, the situation is different. The singular points are equilibrium
for all equations of the system and can be reached only for ξ →∞ or ξ → −∞.

To determine the type of singular points, we write the characteristic equation detA = 0, where the
matrix A has the following form:

A =



R1(−T/u2 + 1)/η −m R1/(ηu) σ0DT/(ηu) 0

R1(D − u+ 1/R1)/λ R1/(λ(γ − 1))−m (F2)′k/λ 0

0 0 −C2(T − 1)−m 0

C3/u 0 0 −C3/u−m

 .

Here R1 = (1 + σ0)D.
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Fig. 1. Projection of isolating neighborhoods on the
plane (u, T ): the dashed and dot-and-dashed curves
refer to k = 1 and k = 0, respectively.

Fig. 2 Fig. 3

Fig. 2. Projection of the isolating neighborhood N1 onto the plane (u, k).

Fig. 3. Projection of the isolating neighborhoods onto the plane (u,w).

An analysis of the coefficients of the characteristic equation at the singular point A0 shows that, in
accordance with the Descartes’ theorem, for D > D∗ the equation has three roots m with a positive real part
and one root with a negative real part; at the point A1, there are two roots with a positive real part and
two roots with a negative real part. At the point B1, one root has a positive real part and three roots have
a negative real part. Thus, all three equilibrium states of the autonomous dynamic system (3) are spatial
saddles.

Construction of Isolating Neighborhoods. In what follows, we assume that the parameters D
and q acquire values such that system (3) allows the existence of all three singular points. If D < D∗, when
A0 is the unique singular point, a traveling wave can exist; after passing through this wave, the medium
returns to the initial state A0. Nevertheless, in our case system (3) does not allow such solutions. Irreversible
changes occur along the trajectories, which are related to the processes of energy release and heat and mass
transfer. The Chapman–Jouguet detonation (D = D∗) is considered below.

In the phase space (u, T , k, w), we construct an isolating neighborhood N1 that contains two singular
points A0 and A1 as internal points and does not contain the point B1, and a neighborhood N2 that contains
the points A0 and B1 and does not contain the point A1. The isolating neighborhood N is a compact and
bound subset of the phase space, where each trajectory corresponding to the solutions of system (3) and
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Fig. 4. Projection of the isolating neighborhood N2 onto the plane (u, k).

passing through its boundary ∂N leaves N in at least one of the directions (as ξ → ∞ or ξ → −∞). The
set S(N) of trajectories of system (3) that remain in N for an arbitrary ξ is called the isolated invariant set.
For the isolating neighborhoods that we are constructing, the set S(N) should be maximal, i.e., it should not
have common points with the boundary ∂N .

The set N1 is bounded by the hyperplanes u = ε, u = D + ε, T = 1, T = T∗, k = 0, k = 1 + ε

(U∗ 6 u 6 D + ε), k = 1− ε (ε 6 u 6 U∗), and w = ε, w = D + ε. Here ε is a small number, T∗ is a rather
large number (the values of T on the surface F1 = 0 are smaller than T∗), and u(A1) < U∗ < u(B1). In
addition, we add to the neighborhood a sphere of radius ε with center at the point A0. The cross sections of
the neighborhood N1 by the planes (u, T ), (u, k), and (u,w) are shown in Figs. 1–3, respectively. We denote
as b+ a set of points that belong to the boundary ∂N1 of the set N1, and the trajectories passing through b+

leave N1; similarly, we denote as b− a set of input points to N1 (b− ⊂ ∂N1). As is shown in Figs. 1–3, the set
of points b+ consists of the hyperplanes u = D+ ε and T = 1, the section u ∈ [U1, D+ ε] for T = T∗, the set
u ∈ [ε, U∗] for k = 1−ε, and also the subset of the hyperplane u = U∗, where k ∈ [1−ε, 1+ε] and T ∈ [1, T1].

For rather small ε, all trajectories passing through the boundary of the ε-neighborhood of the point
A0 leave this neighborhood at least in one direction owing to the saddle type of the point; the intersection of
the set of input points of the trajectories to this neighborhood with the boundary ∂N1 is a bound set with a
set of points b− on the hyperplane k = 0, and the output points form a bound set with a set of points b+ on
u = D + ε.

The neighborhood N2 is bounded by the hyperplanes u = D+ ε, u = ε, k = 0, k = 1 + ε (ε 6 u 6 U∗),
k = 1 − ε (U∗ 6 u 6 D + ε), u = U∗ (k ∈ [1 − ε, 1 + ε]), T = 1, T = T∗, w = ε, and w = D + ε. As for
N1, we supplement N2 by a sphere of radius ε with center at the point A0. Here the set b+ consists of points
where u = D + ε, T = 1, T = T∗ (U1 6 u 6 D + ε), and k = 1− ε (U∗ 6 u 6 D + ε), and the subset of the
hyperplane u = U∗, where k ∈ [1− ε, 1 + ε] and T ∈ [T1, T∗]. The cross sections of the neighborhood N2 by
the planes (u, T ), (u,w), and (u, k) are shown in Figs. 1, 3, and 4, respectively.

We also note that all trajectories of system (3) that have common points with the set k = 1 remain
on this hyperplane for all values of ξ. In addition, the position of the curves in this set indicates that there
exists a unique trajectory that begins at the point A1 and ends at the point B1 (along this trajectory, we
have k = 1). From the physical point of view, this situation corresponds to the shock wave in a gas where
the substance of the c-phase has been completely evaporated and reacted. The proof of the existence and
uniqueness of this trajectory is similar to that given in [1].

Indices of Isolated Sets. Let S be the maximal invariant set contained in the neighborhood N , i.e.,
all trajectories of system (3) passing through the boundary ∂N leave N at least in one time direction, and the
closure of S is contained in N . The Conley index h(S) of the set N is a homotopical class of equivalence of
the factor-space N/b+ [11, 13]: h(S) = [N/b+]. The Conley index corresponds to the Morse index if the latter
is determinate, i.e., for nondegenerate singular points. Thus, for the rest point, which is an isolated invariant
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set, this index is determined by the number of roots of the characteristic equation that have positive real
parts. The Conley index is a topological invariant and is not changed for an arbitrary isolating neighborhood
containing this isolated invariant set.

We calculate the index of the singular point A0. The set of output points for a four-dimensional
ε-sphere with center at the point A0 is a three-dimensional manifold. Factorizing this set, we obtain that the
resulting space is homeomorphic to the space of the homotopical type Σ3. In a similar manner, we can show
that h(A1) = Σ2 and h(B1) = Σ1. Here Σn is an n-dimensional sphere (pointed). For nondegenerate singular
points A0, A1, and B1, the number n coincides with the Morse indices for these points.

We calculate the indices of the isolating neighborhoods. In the four-dimensional phase space
X(u, T, k, w), system (3) defines a continuous mapping f : X × R → X, where ξ ∈ R. If we denote f as
x · ξ for x ∈ X, then the relation (x · ξ) · s = x · (ξ + s) is valid. Therefore, f is a flow. This means that the
trajectories of system (3) can touch isolating neighborhoods (i.e., passing through the boundary ∂Ni, leave
the set Ni in both time directions), and the boundary ∂Ni itself may consist, in particular, of sectors of the
trajectories leaving Ni. The index of the isolating neighborhood coincides with the index of the isolating
block that does not possess these properties.

For the isolating neighborhood N1, the set of output points b+ is doubly connected. If we identify b+

and collapse it into a point, the resultant space is a space of the homotopical type Σ2, i.e., h(S) = Σ2.
The set of output points b+ for the isolating neighborhood N2 is simply connected (as the set of

input points b−). By collapsing b+ into a point, we obtain that the statement h(S) = 0̄ is valid for the
neighborhood N2, i.e., the factor-space is a space of the homotopical type of a one-point space.

Existence of Trajectories Connecting Singular Points. We consider the isolating neighborhood
N1. It is known [13] that, if the isolated invariant set S consisted of only two singular points S = {A0, A1},
it would follow that h(S) = h(A0) ∨ h(A1). Since Σ3 ∨Σ2 6= Σ2, the invariant set {A0, A1} is not maximum,
i.e., there are other trajectories in the neighborhood N1 that remain in N1 during the entire time ξ.

It should be noted that the flow prescribed by the mapping f is gradientlike inside the isolating
neighborhoods Ni, i = 1, 2, if k ∈ (0, 1). For example, for this flow, there exists the Lyapunov function
G(k) = 1− k2, which is rigorously decreasing along all trajectories in Ni other than those in the equilibrium
state. This fact eliminates the possibility of existence of closed trajectories and limiting cycles. Hence, there
exist trajectories for which the point A0 is an α-limiting set and the point A1 is the ω-limiting set, i.e.,
trajectories that connect these points.

We consider trajectories in the isolating neighborhood N2. We note that all the integral curves of
system (3) for which the point B1 is an ω-limiting set compose a three-dimensional manifold S1 that crosses
an infinitesimal neighborhood of the point A1. If some trajectories that belong to S1 and enter this small
neighborhood do not leave N2 as ξ → −∞, then N2 is not an isolating neighborhood. Nevertheless, owing to
the fact that the flow is gradientlike, these curves reach the hyperplane k = 0, and the point A0 should be
α-limiting for them, which proves the existence of the sought trajectories.

We assume that all curves of the manifold S1 that enter a small neighborhood of the point A1 leave N2.
Then the neighborhood N2 is isolating. Since in this case we have h(S) = 0̄ 6= Σ3 ∨ Σ1, the invariant set S
also contains trajectories that differ from the quiescent states A0 and B1, which indicates the existence of
integral curves connecting these singular points.

We consider the case D = D∗. Since there exist trajectories that connect all three singular points for
all values of the parameter D greater than the critical value, in the limiting case, where two of them merge
into one, the sought trajectory corresponding to the steady-state Chapman–Jouguet detonation continues to
exist.

Thus, it is shown in the present paper that, under certain, rather strong limitations on the character of
energy release and interphase interaction, there exist solutions of the traveling-wave type, which correspond
to weak and strong detonation of gas mixtures, and also to the Chapman–Jouguet detonation in the limiting
case.
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